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Philosophy...

Consider a central finite difference stencil

du

dx

∣∣∣
x=xj
≈

p∑
k=1

c
(p)
k (uj+k − uj−k)

Philosophy
Error in numerical solution is governed by the truncation error of
the finite difference stencil.

Strategy

Choose c
(p)
k to eliminate terms up to O(∆x2p)
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Example - Advection equation

ut + ux = 0, 0 ≤ x < 6, t ≥ 0

u(x , 0) = 2 exp

(
−3200

(
x − 1

2

)2
)

Periodic Boundary Conditions
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Analytic dispersion relation

ut + ux = 0

Assume u has uniformly convergent Fourier series. Consider
general Fourier mode, u(x , t) = exp (i(κx − ωt))

ω = κ, Analytic dispersion relation

vp =
ω

κ
, Phase speed

vg =
dω

dκ
, Group speed

Speeds independent of wavenumber
⇒ Non-dispersive solution!
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Numeric dispersion relation

(ut)j +

p∑
k=1

c
(p)
k (uj+k − uj−k) = 0

uj(t) = exp (i(κxj − ω̄t))

⇒ ω̄∆x︸︷︷︸
ξ̄

= 2

p∑
k=1

c
(p)
k sin (k κ∆x︸︷︷︸

ξ

)

Speeds dependent on wavenumber
⇒ Inherently dispersive solution!
Incorrect phase speed, v̄p = ω̄

κ , and group speed, v̄g = dω̄
dκ
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Can show that ξ̄ < ξ, v̄p < vp, v̄g < vg for all classical stencils.
In fact

ξ − ξ̄ =
2p(2p
p

) ∫ ξ

0
(1− cos (ξ′))pdξ′
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Alternative philosophy

Problems involving high frequencies / wavenumbers that travel for
long times have errors dominated by bad numerical dispersion.

• Fluid dynamics

• Aeroacoustics

• Electromagnetism

• Seismology

Philosophy
Consider dispersion error

E (ξ, a) = ξ − ξ̄(ξ, a)

when choosing stencil coefficients
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A new problem...

Consider finite difference stencil

du

dx

∣∣∣
x=xj

=

p+n∑
k=1

ak(uj+k − uj−k) +O(∆x2p)

ξ̄ = 2

p+n∑
k=1

ak sin(kξ)

• Accuracy constraint - Order O(∆x2p)

• Leaves n degrees of freedom

• Use these to minimise dispersion error uniformly, i.e. ‖ξ− ξ̄‖∞
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Main results

Theorem
There is a unique stencil a that minimises ‖ξ − ξ̄(ξ, a)‖∞. The
error of this stencil oscillates n + 1 times.

Can device a convergent algorithm for finding best possible a
(Remez algorithm)
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Example - Advection equation

ut + ux = 0, 0 ≤ x < 6, t ≥ 0

u(x , 0) = 2 exp

(
−3200

(
x − 1

2

)2
)

Periodic Boundary Conditions
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Conclusion

• For many problems the numerical error comes from inaccurate
approximation of Dispersion Relation

• Classical philosophy does not account for this

• We can construct accurate Finite Difference stencils with
arbitrarily small Dispersion Error

For more information, see
Linders, Nordström, Journal of Computational Physics, 2015
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